REFRIGERATION CYCLES

Carnot Cycle

We start discussing the well-known Carnot cycle in its refrigeration mode.
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Figure 1: Carnot Cycle

In this cycle we define the coefficient of performance as follows:

cop=d__T )
w T,-T,

Which comes from the fact that w=aq,, —q, (first law) and q, =T, As, g, =T,As (second
law). Note that w is also given by the area of the rectangle.

Temperature differences make the COP vary. For example, the next figure shows how COP
varies with T, (Ty is ambient in this case) and the temperature difference in exchangers.
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Figure 2: COP changes with heat exchanger temperature approximation and T, (Ty=ambient)

We now turn our attention to a real one stage refrigeration cycle, depicted in the next figure.
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Figure 3: Typical one-stage dry refrigeration Cycle

We notice that:

- To be able to achieve the best match possible with the rectangular shape it is

necessary to operate inside the two phase region.

- Compression is in this example performed outside the two phase region. Creating a
“horn”, which is not thermodynamically advisable, is mechanically better. For this
reason, this cycle is called “dry” cycle. A “wet” cycle is shown in the next figure.
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Figure 4: Wet refrigeration Cycle
- The expander has been substituted by a throttling valve. If an expander had been
used the line from d to a would be a vertical line. This is also done for mechanical
reasons.

The refrigeration cycles can also be represented in a P-H diagram.
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Figure 5: P-H diagram representation of a dry refrigeration cycle

Refrigerant fluid choice: We now turn our attention to the fluids. Usually, one tends to pick p.
as low as possible, but not below atmospheric pressure. Thus, the refrigerant chosen needs to
have a normal boiling point compatible with the lowest temperature of the cycle (usually 10°C
lower than the system one wants to cool). The higher pressure needs to be compatible with the
cooling media used for qy. If this is cooling water, then the Ty needs to be around 10°C higher
than the available cooling water temperature. The next table shows the existing refrigerants. It
is followed by the boiling temperature and rang of selected refrigerants.

58



Table 2-1: Refrigerants

ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

Refrigerant number Chemical name Chemical formula
218 Octafluoropropane CF,CF,CF,
290* Propane CH,CH,CH,
Cyclic organic
compounds
C31é6 Dichlorohexafluorocyclobutane C,CL.F,
C317 Monochloroheptafluorocyclobutane | C,CIF-
C318 Octafluorocyclobutane C,F,
Azeotropes !
300 Refrigerants 12/152a 73.8/26.2wt 93 | CCl;F,/CH;CHF,
501 Refrigerants 22/12 75/25wt % | CHCIF,/CQl,F,
502 Refrigerants 22/115 48.8/51.2wt 7, CHCIF; /CCIF; CFy
Miscellaneous organic
compounds
Hydrocarbons
50 Methane CH,
170 Fthane CH,CH,
290 Propane CH,CH,CH,
600 Butane CH,CH,CH,CH,
601 Isobutane CH(CH,),
1150% Ethylenc CH.—CH,
1270t Propylene CH,CH—CH,
Oxygen compounds
610 Ethyl ether C,H;0C;H;
611 Methyl formate HCOOCH,
Nitrogen compounds
630 Met h}"] aminge CH], N Hz
631 Ethyl amine C,H.NH,;
Inorganic compounds
(Cryogenic)
702 Hydrogen (normal and para) H,
T04 Helium He
720 Neon Ne
T28 Nitrogen IN
729 Air 10.210,,0.78N,.0.01A
732 Oxygen O,
740 Argon A

* Methane, ethane, and propane appear in the halocarbon section in their proper numerical order, but
these compounds are not halocarbons.
T Ethylene and propylene appear in the hydrocarbon section 1o indicate that these compounds arc
hydrocarbons, but are properly identified in the section unsaturated organic compounds.

1 Carrier Corporation Document 2-D-127, p. 1.
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Table 2-1: Refrigerants Continued)

ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

Refrigerant number Chemical name Chemical formula
218 Octafluoropropane CF,CF,CF,
290* Propane CH,CH,CH,
Cyclic organic
compounds
C31é6 Dichlorohexafluorocyclobutane C,CL.F,
C317 Monochloroheptafluorocyclobutane | C,CIF-
C318 Octafluorocyclobutane C,F,
Azeotropes !
300 Refrigerants 12/152a 73.8/26.2wt 93 | CCl;F,/CH;CHF,
501 Refrigerants 22/12 75/25wt % | CHCIF,/CQl,F,
502 Refrigerants 22/115 48.8/51.2wt 7, CHCIF; /CCIF; CFy
Miscellaneous organic
compounds
Hydrocarbons
50 Methane CH,
170 Fthane CH,CH,
290 Propane CH,CH,CH,
600 Butane CH,CH,CH,CH,
601 Isobutane CH(CH,),
1150% Ethylenc CH.—CH,
1270t Propylene CH,CH—CH,
Oxygen compounds
610 Ethyl ether C,H;0C;H;
611 Methyl formate HCOOCH,
Nitrogen compounds
630 Met h}"] aminge CH], N Hz
631 Ethyl amine C,H.NH,;
Inorganic compounds
(Cryogenic)
702 Hydrogen (normal and para) H,
T04 Helium He
720 Neon Ne
T28 Nitrogen IN
729 Air 10.210,,0.78N,.0.01A
732 Oxygen O,
740 Argon A

* Methane, ethane, and propane appear in the halocarbon section in their proper numerical order, but
these compounds are not halocarbons.
T Ethylene and propylene appear in the hydrocarbon section 1o indicate that these compounds arc
hydrocarbons, but are properly identified in the section unsaturated organic compounds.

1 Carrier Corporation Document 2-D-127, p. 1.
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Table 2-1: Refrigerants Continued)

ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

Refrnigerant number

Chemical name

Chemical formula

Inorganic compounds
(noncryogenic)

717

T18

T44

T44A

764

Unsaturated organic
compounds
1112a
1113
1114
1120
1130
1132a
1140
1141
1150
1270

Ammonia
Water

Carbon dioxide
Nitrous oxide
Sulfur dioxide

Dichlorodifluorocthylene
Monochlorotrifluoroethylene
Tetrafluoroethylene
Trichloroethylene
Dichloroethylene

Vinylidene fluoride

Vinyl chloride
Vinyl fluoride

Ethylene
Propylene

NH,
H.O
CO,
N,O
S0,

CCl,—CF,
CCIF=CF,
CF,=CF,
CHCI—CCl,
CHCl=CHC(l
CH,—CF,
CH,—CHCI
CH,—CHF
CH,=CH,
CH,CH—CH,
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Figure 2-6: Temperature Ranges of Refrigerants

We now turn to Pro Il to show how a refrigerant cycle is built.
We start with entering the cycle as follows:
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We pick R12, which will allow us to cool down anything to

Next we define the outlet pressure of the compressor. This needs to be such that stream C (after
the cooler) is higher than 60 °F. To start we choose around 85 psia.
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Next we define the top heat exchanger, by specifying an outlet temperature slightly below the

bubble point.
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We continue by specifying the duty of the bottom exchanger. This is customary because this is
the targeted design goal of the cycle.
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Exit the window after saving all data
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Ed_new Units/Streams from PFD Palette. Double-click on Units/Streams for input.
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We enter the outlet pressure of the valve (atmospheric).
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We also realize that this flowsheet does not have input or output streams. Thus, to start the

simulation, one needs to give an initial value to a stream. We chose stream D, and initialize
with a flowrate that is guessed.
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If the flowrate chosen is too high, then the inlet of the compressor will be two phase and this is
not advisable. If the flowrate is too low, the cycle will loose efficiency (the “horn” will get

larger).

Warning: Pro Il may not realize internally that it needs to solve the unit that the initialized
stream feeds to and try to continue until it reaches convergence in the loop but it will loose the
input data. To avoid problems we specify the order in which we want the flowsheet to solve by

clicking in the unit sequence button.
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Construct the simulation above described and determine the right flowrate in the cycle.
Determine all temperatures and obtain the COP. Compare it with a Carnot Cycle.

The above exercise can be done automatically using a “controller”, which is a type of “spec
and vary” equivalent to “Goal Seek” in Excel. Once the controller is picked, double clicking on
it reveals the menu.
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Thus, we choose to have the inlet to the compressor just slightly above dew point
(specification) and we vary the flowrate, just as we did by hand. It is, however, easier to
specify a very low liquid fraction. Make sure the starting point is close to the right value.
Sometimes the controller has a hard time converging.
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